Math 249 Lecture 10 Notes

Daniel Raban

September 15, 2017

1 Homogeneous and Power Sum Symmetric Functions

Recall from last lecture that we have 2 bases for the symmetric functions: the monomials $\{m_{\lambda}\}$ and the elementary symmetric functions $e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_n}$, where $e_k = m_{1^k}$. We also have that

$$(z - x_1) \cdots (z - x_n) = z^n - e_1 z^{n-1} + e_2 z^{n-2} - \cdots \pm e_n.$$

Example 1.1. The function

$$\prod_{i < j} (x_i - x_j)^2 = \Delta(e_1, \dots, e_n)$$

is a symmetric function. This is the discriminant of a polynomial. So we can calculate discriminants using the e_k terms.

1.1 Homogeneous symmetric functions

We introduce another basis for the symmetric functions: the homogeneous symmetric functions.

Definition 1.1. The homogeneous symmetric functions are the functions h_{λ} for partitions λ such that

$$h_{\lambda} = h_{\lambda_1} \cdots h_{\lambda_{\ell}}, \qquad h_k = \sum_{|\lambda|=k} m_{\lambda}.$$

Proposition 1.1.

$$h_{\lambda} = \sum_{\mu} b_{\lambda,\mu} m_{\mu},$$

where $b_{\lambda,\mu}$ is the number of matrices with entries in \mathbb{N} , row-sums λ , and column-sums μ .

Proof. We use a similar matrix argument to the proof for expressing the e_{λ} in terms of the m_{μ} . Since symmetric functions must be invariant under permuting the variables, to find the coefficient $b_{\lambda,\mu}$, we need only find the coefficient in front of a single monomial in each m_{μ} ; we pick the monomial $x_1^{\mu_1} x_2^{\mu_2} \cdots x_{\ell}^{\mu_{\ell}}$. Each monomial in each h_{λ_i} will be a product of variables with combined degree λ_i ; then we can find the coefficient of a monomial in h_{λ} by finding the number of ways to trace back where its x_i terms could have come from in the product of the h_{λ_i} .

Now consider the following matrix (represented as a table):

	μ_1	μ_2	μ_3	•••
λ_1	2	0	1	•••
$egin{array}{c} \lambda_1 \ \lambda_2 \ \lambda_3 \end{array}$	0	3	0	•••
λ_3	1	0	0	•••
÷	÷	÷	÷	·

We fill in this matrix as follows: Think of the column j as picking an x_j from some of $h_{\lambda_1}, h_{\lambda_2}, \ldots, h_{\lambda_\ell}$ (this is "where the x_j term came from" when you multiply the h_{λ_i}), and place a 1 in the space i, j if an x_j term comes from h_{λ_i} and a 0 otherwise. The product of all the x_j terms in a column should give $x_j^{\mu_j}$ (since this is the monomial in e_{λ} that we are looking at), so this is a matrix with column-sums μ_j . Similarly, each monomial in h_{λ_i} has variables with combined multiplicity λ_i , so the 1s in row i should add to be λ_i . We have produced a bijection between these matrices and the number of ways to get $x_1^{\mu_1} x_2^{\mu_2} \cdots x_\ell^{\mu_\ell}$ from the product of the h_{λ_i} , so we are done.

1.1.1 Generating functions for the e_k and h_k

Define the generating function for the e_n terms: $E(t) = \sum_n e_n t^n$.

$$E(t) = \sum_{n} e_n t^n = \prod_{i} (1 + tx_i)$$

because e_n is the sum of monomials where we choose n different x_i terms to multiply together. Also define the generating function for the h_n terms: $H(t) = \sum_n h_n t^n$.

$$H(t) = \sum_{n} h_{n} t^{n} = \prod_{i} (1 + x_{i}t + x_{i}^{2}t^{2} + \dots) = \prod_{i} \frac{1}{1 - x_{i}t},$$

where the second equality follows from the observation that multiplying the $(1 + x_i t + \cdots)$ terms keeps track of the number of powers of each x_i , where the powers of the x_i terms correspond to a partition of n; then the coefficient of t^n is the sum of all polynomials corresponding to partitions of n.

This gives us that

$$E(t) = 1/H(-t), \qquad E(t)H(-t) = 1,$$

and looking at the t^k term in the latter series expansion gives us

$$e_k - e_{k-1}h_1 + e_{k-2} - \dots + (-1)^k h_k = 0.$$

This gives us e_k in terms of h_1, \ldots, h_k and h_k in terms of e_1, \ldots, e_k , and the expressions for each in terms of the other are the same! We also get that $\{h_{\lambda} : \lambda_1 \leq n\}$ is a basis for $\lambda(x_1, \ldots, x_n)$

Also, if we define for $\Lambda(x_1, x_2, ...)$ the map $\omega : \Lambda \to \Lambda$ sending $e_k \mapsto h_k$, we have $\omega_k^{-1} : \Lambda \to \Lambda$ given by $h_k \mapsto e_k$. This is because the expression for h_k in terms of the e_k is the exact same as the expression for e_k in terms of the h_k . So $\omega^2 = \mathrm{id}_{\Lambda}$. This makes ω an involution.

1.2 Power sum symmetric functions

Definition 1.2. The power sum symmetric functions are the functions

$$p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_{\ell}}$$
, where $p_k = x_1^k + x_2^k + \cdots = m_{(k)}$

Example 1.2. We can calculate a few p_{λ} in terms of our other bases.

$$\begin{split} p_2 &= m_{(2)}, \\ p_{(1,1)} &= p_1^2 = m_{(2)} + 2m_{(1,1)}, \\ e_2 &= m_{(1,1)} = \frac{p_1^2 - p_2}{2}, \\ h_2 &= m_{(1,1)} + m_{(2,2)} = \frac{p_1^2 + p_2}{2}. \end{split}$$

The power-sum symmetric functions are related to the homogeneous symmetric functions and the sizes of conjugacy classes of the symmetric group.

Proposition 1.2.

$$h_n = \sum_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}, \ where \ \frac{n!}{z_{\lambda}} = |C_{\lambda}|$$

Proof. Use the generating function $H(t) = \sum_{n} h_n t^n = \prod_i \frac{1}{1-x_i t}$. Then

$$\log(H(t)) = \sum_{i} \log\left(\frac{1}{1 - x_i t}\right) = \sum_{i} -\log(1 - x_i t) = \sum_{i} \sum_{k=1}^{\infty} \frac{x_i^k t^k}{k} = \sum_{k=1}^{\infty} \frac{p_k t^k}{k}.$$

So, using the generating function for the sizes of conjugacy classes of the symmetric group (proved in lecture 3), we have

$$H(t) = \exp\left(\sum_{k} \frac{p_k t^k}{k}\right) = \sum_{n} \left(\sum_{|\lambda|=n} \frac{p_{\lambda}}{z_{\lambda}}\right) t^n.$$